Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 7(10): 8558-8569, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309463

RESUMO

In order to improve the photodegradation ability of fertilizer coating material and realize the sustainability of fertilizers, in this study, the commercially available photosensitive iron stearate (FeSt3) was wet-ground into submicrometer FeSt3 (SFeSt3) particles and used in preparation of a SFeSt3-modified bio-based polyurethane (PU)-coated controlled release urea (PU-SFe-CRU). The results showed that after 1 month photodegradation, the coating material had significant yellowing, the oxygen content of SFeSt3-modified PU (PU-SFe) increased by 56.89%, and its structure became more porous and looser than PU. The thermal stability of PU-SFe decreased, and more intermediate products were produced after exposure to UV light. The germination experiment showed that PU-SFe before and after photodegradation (up to 60 mg/L) had no adverse effect on the seed germination and bud growth of rice. Additionally, PU-SFe had a significantly higher Cr adsorption capacity after photodegradation due to the increase of the oxygen-containing group and specific surface. This study provides a theoretical basis for the research and development of photodegradable environment-friendly controlled release urea.

2.
Sci Total Environ ; 801: 149694, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34428661

RESUMO

Vegetable production systems with excessive nitrogen fertilizer result in severe N2O emission. It is pivotal to identify the source of N2O for reducing N2O emission, but estimating microbial pathways of N2O production is very difficult due to the existence of N2O reduction. A promising tool can address this problem by using δ18O and δ15NSP of N2O to construct a dual isotopocule plot. For ascertaining the microbial pathways of N2O production and consumption in soil fertilized for vegetable production, four treatments were set up: urea (U), half urea and half organic fertilizer (UO), organic fertilizer (O) and no fertilizer (NF), and the experiment was carried out continuously for two years. The δ18O vs. δ15NSP plot method indicated that the nitrification/fungal denitrification was a dominant in N2O emission, and the U treatment was the highest, followed by OU, O and NF in the both years. Among the different treatments, furthermore, the N2O flux had the same trend, whereas the extent of N2O reduction showed an opposite trend. Overall, inorganic fertilizer enhances nitrification/fungal denitrification and hinders reduction of N2O to N2, resulting in a larger amount of N2O emission. However, organic fertilizer increases the contribution of denitrification and greatly improves the extent of N2O reduction, which helps to reduce N2O emission. Therefore, organic fertilizer is crucial to reducing N2O emission by enhancing N2O reduction and should be properly applied in production practice.


Assuntos
Solo , Verduras , Fertilizantes/análise , Isótopos , Nitrogênio/análise , Óxido Nitroso/análise
3.
Front Plant Sci ; 12: 759929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975942

RESUMO

Controlled release phosphorus (P) fertilizers and humic acid (HA) applications are two effective and significant techniques or measures for preventing P loss and enhancing maize development. However, the underlying physiological mechanism of how the controlled release P fertilizers combined with HA affect the maize production and P-use efficiency (PUE) remains unknown. The effects of applying coated diammonium phosphate (CDAP) and HA together on soil nutrient supply intensity, soil phosphatase activity, photosynthesis, endogenous hormone contents, and yield of maize, as well as PUE, were examined in this study. In a pot experiment, two types of P fertilizers-CDAP and diammonium phosphate (DAP)- as well as two HA application rates (0 and 45 kg ha-1) and two P levels (60 and 75 kg P2O5 ha-1) were utilized. Results showed that the key elements that influence the growth and yield of the maize were the availability of P content in soil, plant photosynthesis, and hormone levels. The combination of CDAP and HA had a greater impact on yield and PUE over the course of 2 years than either DAP alone or DAP combined with HA. Besides, using CDAP in combination with HA increased the yield and PUE by 4.2 and 8.4%, respectively, as compared to the application of CDAP alone at 75 kg P2O5 ha-1. From the twelve-leaf to milk stages, the available P content in the soil was increased by an average of 38.6% with the combination of CDAP and HA compared to the application of CDAP alone at 75 kg P2O5 ha-1. In addition, the application of CDAP combined with HA boosted the activities of ATP synthase, as well as the content of cytokinin (CTK), and hence improved the maize photosynthetic rate (Pn). When compared to the application of CDAP alone or DAP combined with HA, the Pn of CDAP + HA treatments was enhanced by 17.9-35.1% at the same P rate. In conclusion, as an environmentally friendly fertilizer, the combined application of CDAP and HA improved the intensity of the soil nutrient supply, regulated photosynthetic capabilities, and increased the yield and PUE, which is important for agricultural production, P resource conservation, and environmental protection.

4.
Sci Total Environ ; 665: 709-717, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30780016

RESUMO

N2O emissions have increased significantly over the last decades, with much of the increase being ascribed to the expansion in agricultural land. Agricultural water management has significant influence on N2O emissions, hence the investigation of N2O emissions and the underlying production mechanisms under different irrigation managements would provide insights for N2O emission reduction and rational water usage. Here, we used the stable isotope method to evaluate the N2O isotopic signatures and the site preference, to clarify the N2O emission dynamics and the N2O source partitioning under different irrigation managements. We applied a furrow irrigation system and a drip irrigation system to maintain two different soil water conditions, allowance of dry-wet cycles and relatively stable water conditions, respectively. We found that the N2O emission was significantly decreased under drip irrigation compared to furrow irrigation with cumulated N2O flux of 526.3 mg m-2 and 571.0 mg m-2, respectively. In general, furrow irrigation with its dry-wet alternations promoted N2O emissions, while drip irrigation created a relatively stable environment that reduced N2O emissions. The intramolecular 15N isotopic composition of N2O was used to partition the relative contribution of denitrification and nitrification. Nitrification dominated the processes driving N2O production under both treatments, nearly accounting for 76% up to 100% during the initial N2O peaks. Effective measure for mitigating N2O emissions from the investigated vegetable field could be obtained by replacing the traditional furrow irrigation with drip irrigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...